I am an experienced environmental analytical scientist with a strong background in statistical treatment of data. I have significant field experience in developing and deploying analytical instrumentation in the High Arctic.

My current research at Concordia University in Montreal, Canada focuses on long-term observations of urban pollutants in major Canadian cities and includes statistical analysis of current and past (10+ year) pollution data. I am interested in statistical analysis of medium sized data sets, including multivariate data analysis of partially dichotomous data. I am very much interested interpreting measurement data for the application and validation of atmospheric chemistry models. My main statistical tools for data analysis are python and R.

I develop field deployable sensor suites to track urban air pollution, with a focus on critical air pollutants and organics on a hyper-local level. The goal is to determine local pollution sources and transport and accurately measure actual exposure levels in real-time. I am part of the Decolonizing Light project that develops and deploys a citizen-science low-cost sensor air quality monitoring network in collaboration with the community of Kahna:wake.

Previously, I was chapter lead and main author of the (peer-reviewed) Canadian Mercury Science Assessment, responsible for the Emissions Chapter. I took on this project as a result of a previous collaboration with Environment and Climate Change Canada, focusing on modelling of mercury transport in the atmosphere and validation with observations from AMNet stations.

I was a collaborator on the (now completed) EU funded FP7 MYCOSPEC project, where I performed multivariate modelling of mid-infrared data for classification of contaminated agricultural commodities. This included non-parametric machine learning algorithms such as bagged decision trees. Current collaborations that emerged from this work include the statistical analysis of mycotoxin concentrations from a global survey and a meta–analysis of occurrence data provided by the European Food Safety Authority (EFSA).

I also investigated the exchange of volatile organic compounds between snow and air. I employed GC-FID and GC-MS for field and lab based measurements and successfully deployed a GC-FID system in Alert, NU in 2006. Another field trip to Barrow, AK followed in 2009, where I participated in an IPY OASIS initiative. I now continue this work in an urban setting in a greater effort to trace local pollution levels.

My experience as a Manager for Analytics at Sixtron Advanced Materials in Dorval, Quebec in 2009 and 2010 included analytical development & process monitoring using GC-TCD/FID/MS. I performed and coordinated validation and data analysis from TGA, DSC, XRF, particle size measurements. I also was project manager for equipment deployment at a prospective Chinese customer.

If you want to know more… contact me.